跳到主要内容

小顶堆

一、认识


小顶堆是一个完全二叉树,每一个节点的值都大于或者等于其左右孩子节点的值为大顶堆;每一个节点的值都小于等于其左右孩子节点的值成为小顶堆;

堆满足完全二叉树 (n>0)性质 , 从上到下,从左到右对节点从 0 开始进行编号,对任意第 i 个节点:

  • 父节点索引为 Math.floor((i-1)/2) 或者 (i - 1) >>> 1, 左子节点索引为 2i+1 ,右子节索引点为 2i+2

  • 大顶堆: array[i] >= array[2*i+1] && array[i] >= array[2*i+2]

  • 小顶堆: array[i] <= array[2*i+1] && array[i] <= array[2*i+2]

二、思路


三、实现


class MinHeap {
constructor() {
this.data = [];
}

compare(a, b) {
return a - b;
}

/**
* @description: 向小顶堆中添加元素
* @param {*} value
*/
push(value) {
const index = this.data.length;
this.data.push(value);
this.shiftUp(this.data, index);
}

/**
* @description: 通过 data 数组构建小顶堆
* @param {*} data
*/
build(data) {
this.data = [...data];
const halfLength = this.data.length >>> 1;
for (let i = halfLength - 1; i >= 0; i--) {
this.shiftDown(this.data, i, this.data.length);
}
return this.data;
}

pop() {
if (this.data.length === 0) {
return null;
}
const first = this.data[0];
const last = this.data.pop();
if (first !== last) {
this.data[0] = last;
this.shiftDown(this.data, 0, this.data.length);
}
return first;
}

peek() {
return this.data.length === 0 ? null : this.data[0];
}

/**
* @description: 小顶堆排序 --- 从大到小
*/
sort() {
let data = [...this.data];
// 1. 通过 data 数组构建小顶堆
data = this.build(data);
// 2. 从最后一个元素开始, 依次与堆顶元素进行交换, 然后重新调整堆
for (let i = data.length - 1; i > 0; i--) {
[data[0], data[i]] = [data[i], data[0]];
this.shiftDown(data, 0, i);
}
return data;
}

shiftUp(data, startIndex) {
let i = startIndex;
while (i > 0) {
const parentIndex = (i - 1) >>> 1;
const parent = data[parentIndex];

if (this.compare(parent, data[i]) > 0) {
[data[i], data[parentIndex]] = [data[parentIndex], data[i]];
i = parentIndex;
} else {
return;
}
}
}

shiftDown(data, startIndex, endIndex) {
let i = startIndex;
const halfLength = endIndex >>> 1;

while (i < halfLength) {
const leftIndex = (i + 1) * 2 - 1;
const left = data[leftIndex];
const rightIndex = leftIndex + 1;
const right = data[rightIndex];

if (this.compare(left, data[i]) < 0) {
if (rightIndex < endIndex && this.compare(right, left) < 0) {
[data[i], data[rightIndex]] = [data[rightIndex], data[i]];
i = rightIndex;
} else {
[data[i], data[leftIndex]] = [data[leftIndex], data[i]];
i = leftIndex;
}
} else if (rightIndex < endIndex && this.compare(right, data[i]) < 0) {
[data[i], data[rightIndex]] = [data[rightIndex], data[i]];
i = rightIndex;
} else {
return;
}
}
}
}

测试

const heap = new MinHeap();
const array = [1, 3, 6, 10, 8, 12, 7, 4, 5, 9, 2];
array.forEach(item => {
heap.push(item);
});
console.log('heap.data', heap.data);
array.forEach(() => {
console.log(heap.pop());
});

heap.build([1, 3, 6, 10, 8, 12, 7, 4, 5, 9, 2]);
console.log(heap.data);
console.log(heap.sort());