邻接矩阵图
介绍
实现
创建二维数组
:::details 点击查看代码
createTwoArray(n) {
let array = [];
for (let i = 0; i < n; i++) {
array[i] = [];
for (let j = 0; j < n; j++) {
array[i][j] = 0;
}
}
return array;
}
:::
添加顶点
:::details 点击查看代码
insertVertex(vertex) {
this.vertexes.push(vertex);
}
:::
移除顶点
添加边
:::details 点击查看代码
insertEdge(vertex1, vertex2, weight) {
const vertex1Index = this.getIndexOfVertex(vertex1);
const vertex2Index = this.getIndexOfVertex(vertex2);
this.edges[vertex1Index][vertex2Index] = weight;
this.edges[vertex2Index][vertex1Index] = weight;
this.count++;
}
:::
移除边
遍历图
获取相邻顶点
:::details 点击查看代码
getFirstNeighbor(index) {
for (let i = 0; i < this.vertexes.length; i++) {
if (this.edges[index][j] > 0) {
return i;
}
}
return -1;
}
:::
判断是否相邻
根据相邻顶点的下一个顶点
:::details 点击查看代码
getNextNeighbor(vertex1, vertex2) {
for (let i = vertex2 + 1; i < this.vertexes.length; i++) {
if (this.edges[vertex1][i] > 0) {
return i;
}
}
return -1;
}
:::
深度优先遍历访问 DFS
思想: 深度优先遍历基于栈结构。每次访问完当前节点后首先访问当前节点的第一个邻接节点
:::details 点击查看代码
:::
广度优先遍历访问 BFS
思想: 广度优先遍历基于队列结构。类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的节点的顺序,以便按这个顺序访问这些节点的邻接节点
完整代码
:::details 点击查看代码
class Graph {
vertexes = [];
edges;
count = 0;
visited = [];
constructor(n) {
this.edges = this.createTwoArray(n);
}
createTwoArray(n) {
let array = [];
for (let i = 0; i < n; i++) {
array[i] = [];
for (let j = 0; j < n; j++) {
array[i][j] = 0;
}
}
return array;
}
insertVertex(vertex) {
this.vertexes.push(vertex);
}
getIndexOfVertex(vertex) {
return this.vertexes.indexOf(vertex);
}
insertEdge(vertex1, vertex2, weight) {
const vertex1Index = this.getIndexOfVertex(vertex1);
const vertex2Index = this.getIndexOfVertex(vertex2);
this.edges[vertex1Index][vertex2Index] = weight;
this.edges[vertex2Index][vertex1Index] = weight;
this.count++;
}
getValueOfVertex(i) {
return this.vertexes[i];
}
getFirstNeighbor(index) {
for (let i = 0; i < this.vertexes.length; i++) {
if (this.edges[index][i] > 0) {
return i;
}
}
return -1;
}
getNextNeighbor(vertex1, vertex2) {
for (let i = vertex2 + 1; i < this.vertexes.length; i++) {
if (this.edges[vertex1][i] > 0) {
return i;
}
}
return -1;
}
show() {
return this.edges;
}
DFSTraverseByRecursion(vertexIndex) {
let visited = [];
let result = "";
for (let i = 0; i < this.vertexes.length; i++) {
visited[i] = false;
}
const DFS = (vertexIndex) => {
result += this.getValueOfVertex(vertexIndex) + "->";
visited[vertexIndex] = true;
let vertexNeighborIndex = this.getFirstNeighbor(vertexIndex);
while (vertexNeighborIndex != -1) {
if (!visited[vertexNeighborIndex]) {
DFS(vertexNeighborIndex);
}
vertexNeighborIndex = this.getNextNeighbor(
vertexIndex,
vertexNeighborIndex
);
}
};
for (let i = 0; i < this.vertexes.length; i++) {
if (!visited[i]) {
DFS(i);
}
}
return result;
}
DFSTraverseByIteration(vertexIndex) {
let visited = [];
let result = "";
for (let i = 0; i < this.vertexes.length; i++) {
visited[i] = false;
}
const DFS = (vertexIndex) => {
result += this.getValueOfVertex(vertexIndex) + "->";
visited[vertexIndex] = true;
let vertexNeighborIndex = this.getFirstNeighbor(vertexIndex);
while (vertexNeighborIndex != -1) {
if (!visited[vertexNeighborIndex]) {
DFS(vertexNeighborIndex);
}
vertexNeighborIndex = this.getNextNeighbor(
vertexIndex,
vertexNeighborIndex
);
}
};
for (let i = 0; i < this.vertexes.length; i++) {
if (!visited[i]) {
DFS(i);
}
}
return result;
}
BFSTraverseByRecursion() {
let visited = [];
let result = "";
for (let i = 0; i < this.vertexes.length; i++) {
visited[i] = false;
}
const BFS = (vertexIndex) => {
result += this.getValueOfVertex(vertexIndex) + "->";
visited[vertexIndex] = true;
let queue = [];
queue.push(vertexIndex);
while (queue.length) {
let queueHead = queue.shift();
let vertexNeighborIndex = this.getFirstNeighbor(queueHead);
while (vertexNeighborIndex != -1) {
if (!visited[vertexNeighborIndex]) {
result += this.getValueOfVertex(vertexNeighborIndex) + "->";
visited[vertexNeighborIndex] = true;
queue.push(vertexNeighborIndex);
}
vertexNeighborIndex = this.getNextNeighbor(
vertexIndex,
vertexNeighborIndex
);
}
}
};
for (let i = 0; i < this.vertexes.length; i++) {
if (!visited[i]) {
BFS(i);
}
}
return result;
}
BFSTraverseByIteration() {
let visited = [];
let result = "";
for (let i = 0; i < this.vertexes.length; i++) {
visited[i] = false;
}
const BFS = (vertexIndex) => {
result += this.getValueOfVertex(vertexIndex) + "->";
visited[vertexIndex] = true;
let queue = [];
queue.push(vertexIndex);
while (queue.length) {
let queueHead = queue.shift();
let vertexNeighborIndex = this.getFirstNeighbor(queueHead);
while (vertexNeighborIndex != -1) {
if (!visited[vertexNeighborIndex]) {
result += this.getValueOfVertex(vertexNeighborIndex) + "->";
visited[vertexNeighborIndex] = true;
queue.push(vertexNeighborIndex);
}
vertexNeighborIndex = this.getNextNeighbor(
vertexIndex,
vertexNeighborIndex
);
}
}
};
for (let i = 0; i < this.vertexes.length; i++) {
if (!visited[i]) {
BFS(i);
}
}
return result;
}
}
const vertex = 5;
const vertexValue = ["A", "B", "C", "D", "E"];
const graph = new Graph(vertex);
for (let i of vertexValue) {
graph.insertVertex(i);
}
graph.insertEdge("A", "B", 1);
graph.insertEdge("A", "C", 1);
graph.insertEdge("B", "C", 1);
graph.insertEdge("B", "D", 1);
graph.insertEdge("B", "E", 1);
console.log("遍历图的边");
console.log(graph.show());
console.log("深度优先遍历");
console.log(graph.DFSTraverseByRecursion());
console.log("广度优先遍历");
console.log(graph.BFSTraverseByIteration());
:::