ArtificialIntelligence神经网络算法损失函数BinaryCross-Entropy认识本页总览认识2025年02月07日柏拉文越努力,越幸运 一、认识 二元交叉熵损失(Binary Cross-Entropy Loss, BCE Loss) 二、公式 L=−1n∑i=1n[yilogy^i+(1−yi)log(1−y^i)]L = -\frac{1}{n} \sum_{i=1}^{n} \left[ y_i \log{\hat{y}_i} + (1 - y_i) \log{(1 - \hat{y}_i)} \right]L=−n1i=1∑n[yilogy^i+(1−yi)log(1−y^i)]